MÜLLER-BBM

Müller-BBM GmbH Robert-Koch-Str. 11 82152 Planegg bei München

Telephone +49(89)85602 0 Telefax +49(89)85602 111

www.MuellerBBM.de

M. Eng. Philipp Meistring Telephone +49(89)85602 228 Philipp.Meistring@mbbm.com

2019-11-06 M137948/03 Version 2 MSG/STEG

Fabric type 1398, ADO Goldkante

Measurement of sound absorption in a reverberation room according to DIN EN ISO 354

Test Report No. M137948/03

Client:

Consultant:

Date of report:

Delivery date of test object: Date of test:

Total number of pages:

ADO Goldkante GmbH & Co. KG Zimmermühlenweg 14-18 61440 Oberursel Germany

M. Eng. Philipp Meistring Jan-Lieven Moll

2019-11-06 (1st revised version) 2019-10-22 (original version)

2019-10-14

2019-10-18

In total 11 pages, thereof 5 pages text, 1 pages Appendix A, 1 pages Appendix B, and 4 pages Appendix C.

Müller-BBM GmbH HRB Munich 86143 VAT Reg. No. DE812167190

Managing directors: Joachim Bittner, Walter Grotz, Dr. Carl-Christian Hantschk, Dr. Alexander Ropertz, Stefan Schierer, Elmar Schröder

Table of contents

1	Task	3
2	Basis	3
3	Test object and test assembly	3
4	Execution of the measurements	4
5	Evaluation	4
6	Measurement results	5
7	Remarks	5

Appendix A:	Test certificates
Appendix B:	Photographs
Appendix C:	Description of test method, test facility and test equipment

1 Task

On behalf of the company ADO Goldkante GmbH & Co. KG, 61440 Oberursel, the sound absorption of the fabric type 1398 had to be measured according to DIN EN ISO 354 [1] in the reverberation room. The fabric was tested as a curtain in a folded arrangement with a distance of 100 mm to the reflective wall.

The results are to be evaluated according to DIN EN ISO 11654 [2] and ASTM C 423-17 [4].

2 Basis

This test report is based on the following documents:

- DIN EN ISO 354: Acoustics Measurement of sound absorption in a reverberation room (ISO 354:2003); German version EN ISO 354:2003. 2003-12
- [2] DIN EN ISO 11654: Acoustics Sound absorbers for use in buildings Rating of sound absorption (ISO 11654:1997); German version EN ISO 11654:1997. 1997-04
- [3] ISO 9613-1: Acoustics; Attenuation of sound during propagation outdoors; part 1: calculation of the absorption of sound by the atmosphere. June 1993
- [4] ASTM C 423-17: Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method. Revision: 17. 2017-02
- [5] E DIN EN ISO 12999-2 (draft): Acoustics Determination and application of measurement uncertainties in building acoustics - Part 2: Sound absorption. August 2019. German and English version prEN ISO 12999-2:2019
- [6] DIN EN ISO 9053-1: Acoustics Determination of airflow resistance Part 1: Static airflow method (ISO 9053-1:2018); German version EN ISO 9053-1:2018. March 2019

3 Test object and test assembly

3.1 Test object

The tested material is described by the manufacturer as follows:

- ADO Goldkante type 1398
- material 100 % PES FR

The testing laboratory has measured as follows:

-	area specific mass:	<i>m</i> " = 346 g/m²
---	---------------------	-----------------------

- thickness: t = 0.58 mm
- air flow resistance acc. to DIN EN ISO 9053-1 [6]: R_s > 40000 Pa s/m

3.2 Test assembly

The installation of the test objects was carried out by employees of the test laboratory at the reverberation room of Müller-BBM. The test object was installed in a folded arrangement with a distance to the reflective wall of 100 mm.

The mounting details are as follows:

- curtain arrangement following type G-100 acc. to DIN EN ISO 354
- clear distance to the wall 100 mm, construction without enclosing frame
- fixed directly underneath the ceiling, suspended from a metal rail, height 60 mm
- 100 % fabric addition
- arranged in one web 7.17 m x 3.00 m
- total dimensions of the test surface (starting at the lower border of the metal rail): width x height = 3.59 m x 2.94 m
- total test surface S = 10.55 m²

The photographs in Appendix B show details of the test arrangements.

4 Execution of the measurements

The measurements were executed and evaluated according to DIN EN ISO 354 [1].

The test procedure, the test facility and the test equipment used for the measurements are described in Appendix C.

5 Evaluation

The sound absorption coefficient α_S was determined in one-third octave bands between 100 Hz and 5000 Hz according to DIN EN ISO 354 [1].

In addition to the sound absorption coefficients the following characteristic values were determined according to DIN EN ISO 11654 [2]:

- Practical sound absorption coefficient α_p in octave bands
- Weighted sound absorption coefficient α_w as single value

The weighted sound absorption coefficient α_w is determined from the practical sound absorption coefficients α_p in the octave bands of 250 Hz to 4000 Hz.

According to ASTM C 423-17 [4] the following characteristic values were determined:

- Noise reduction coefficient NRC as single value

Arithmetical mean value of the sound absorption coefficients in the four onethird octave bands 250 Hz, 500 Hz, 1000 Hz and 2000 Hz; mean value rounded to 0.05.

- Sound absorption average SAA as single value

Arithmetical mean value of the sound absorption coefficients in the twelve onethird octave bands between 250 Hz and 2500 Hz; mean value rounded to 0.01.

6 Measurement results

The sound absorption coefficients α_s in one-third octave bands, the practical sound absorption coefficients α_p in octave bands and the single values α_w , *NRC* and *SAA* are indicated in the test certificates in Appendix A.

Information on the measurement uncertainties (repeatability and reproducibility) are given in Appendix C. Measurement uncertainties were not considered for attribution of the classes of sound absorption according to DIN EN ISO 11654 [2].

7 Remarks

The test results exclusively relate to the investigated objects and conditions described.

Ph Mistra

M. Eng. Philipp Meistring (Project Manager)

7a - Li_ Hal

Jan-Lieven Moll (Responsible)

This test report may only be published, shown or copied as a whole, including its appendices. The publishing of excerpts is only possible with prior consent of Müller-BBM.

Durch die DAkkS Deutsche Akkreditierungsstelle GmbH nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

Sound absorption coefficient ISO 354 Measurement of sound absorption in reverberation rooms

Client:	
---------	--

ADO Goldkante GmbH & Co. KG Zimmermühlenweg 14-18, 61440 Oberursel, Germany

Test specimen: Fabric art.-no. 1398

arranged as curtain (folded with 100 % fabric addition and 100 mm distance)

Material details:

- fabric article no. 1398
- material 100 % PES FR
- area specific mass $m'' = 346 \text{ g/m}^2$
- airflow resistance R_S > 40000 Pa s/m
- thickness d = 0.58 mm

Test arrangement:

- curtain arrangement following type G-100 acc. to DIN EN ISO 354, without enclosing frame
- folded arrangement (100 % fabric addition), 100 mm clear distance to the reflective wall
- one web *B* x *H* = 7.17 m x 3.00 m
- fixed directly underneath the ceiling on a metal rail (h = 60 mm)
- test surface width x height = 3.59 m x 2.94 m (starting at the lower edge of the metal rail)

Room: Reverberation Room Volume: 199.60 m³ Size: 10.55 m² Date of test: 2019-10-18

			F			!			00 F	4.0		04	~		
ency α _s	α _p			witho					20.5	-	3.3	94.	-		
1/3 octave z]	octave		L	with s	specii	men			20.5	48	3.5	95.	0		
100 • 0.00				-					. .						
125	0.00	4.0	-0-	- Sc	ound	abs	orptio	n co	efficier	nt					
160 ° 0.05		1.2 F		_		_		_				_		\rightarrow	T
200		<u>v</u>													
250 0.13	0.15	[♀] 1.0	+			_		_			_	_		—	╋
315 0.24		<u> </u>													
400 0.39			+	-		-		_							+-
500 0.48	0.50	₩ <u></u> 8.0	\square											\mp	Ŧ
630 0.57		Sound absorption coefficient α _S 8.0 ficient α _S 9.0 absorption coefficient α _S 8.0 ficient α _S 9.0 absorption coefficient α _S	+			\rightarrow		_	+					+	+
800 0.60		.0 0.6	\rightarrow											—	+
1000 0.57	0.60	bi bi								Ŷ		V		\pm	\pm
1250 0.58			\rightarrow	-				A-			_		L +	+	+-
1600 0.51		-2 <u>ë</u> 0.4					1						X		
2000 0.44	0.45	g	+					_	+ +			_	۲.	\checkmark	+
2500 0.34		JD 0.2	—			A								\rightarrow	\$
3150 0.27		S 3.2	+	+					+ +		_			+	-
4000 0.22	0.25				r	_		_						_	_
5000 0.20		0.0 ዕ	125		25	0		500		100	~	20	00	A	000
ctical sound abso Rating	accordii		54			e R	edu	ctio	n Co	effic	cien	TM (C42: R C =	3: 0.40	
ctical sound abso Rating	accordin und abs α _w =	afficient according to ISO 1165 ng to ISO 11654: sorption coefficient 0.40	54			e R	edu	ctio	n Co	effic	cien	TM t N	F	C423	C423: C423:

θ [°C] *r. h.* [%] *B* [kPa]

MÜLLER-BBM

Fabric Type 1398, ADO Goldkante

Figure B.1. Test object mounted in the reverberation room, frontal view.

Figure B.2. Test object mounted in the reverberation room, diagonal view.

Description of the test procedure for the determination of the sound absorption in a reverberation room

1 Measurand

The sound absorption coefficient α of the test object was determined. For this purpose the mean value of the reverberation time in the reverberation room with and without the test object was measured. The sound absorption coefficient was calculated using the following equation:

$$\alpha_{S} = \frac{A_{T}}{S}$$

$$A_{T} = 55.3 V \left(\frac{1}{c_{2}T_{2}} - \frac{1}{c_{1}T_{1}} \right) - 4 V (m_{2} - m_{1})$$

With:

- α_{S} sound absorption coefficient
- A_T equivalent sound absorption area of the test object in m²
- S area covered by the test object in m²
- *V* volume of the reverberation room in m³
- *c*₁ propagation speed of sound in air in the reverberation room without test object in m/s
- *c*₂ propagation speed of sound in air in the reverberation room with test object in m/s
- T_1 reverberation time in the reverberation room without test object in s
- T_2 reverberation time in the reverberation room with test object in s
- m_1 power attenuation coefficient in the reverberation room without test object in m⁻¹
- m_2 power attenuation coefficient in the reverberation room with test object in m⁻¹

The different dissipation during the sound propagation in the air was taken into account according to paragraph 8.1.2 of DIN EN ISO 354 [1]. The calculation of the power attenuation coefficients was effected according to ISO 9613-1 [3]. The climatic conditions during the measurements are indicated in the test certificates.

Information on the repeatability and reproducibility of the test procedure are given in DIN EN ISO 354 [1] and E DIN EN ISO 12999-2 [5].

2 Test procedure

2.1 Description of the reverberation room

The reverberation room complies with the requirements according to DIN EN ISO 354 [1].

The reverberation room has a volume of $V = 199.6 \text{ m}^3$ and a surface of $S = 216 \text{ m}^2$.

Six omni-directional microphones and four loudspeakers were installed in the reverberation room.

In order to improve the diffusivity, six composite sheet metal boards dimensioned 1.2 m x 2.4 m and six composite sheet metal boards dimensioned 1.2 m x 1.2 m were suspended curved and irregularly.

Figure C.1 shows the drawings of the reverberation room.

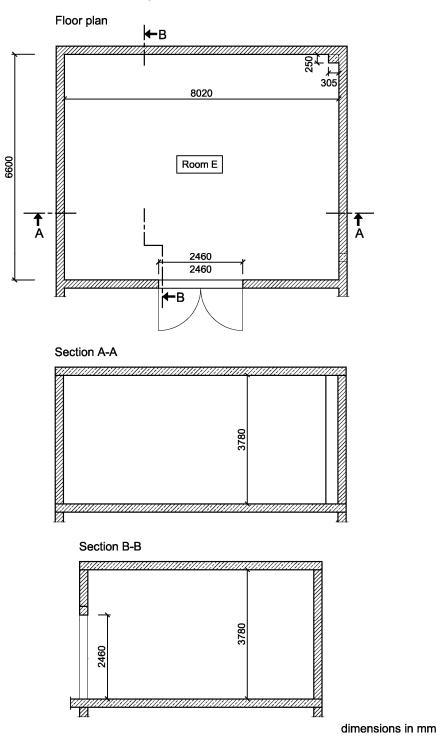


Figure C.1. Plan view and sections of the reverberation room.

2.2 Measurement of reverberation time

The determination of the impulse responses were carried out according to the indirect method. In all tests, a sinusoidal sweep with pink noise spectrum was used as test signal. In the reverberation room with and without test objects each 24 independent combinations of loudspeakers and microphones were measured. The reverberation time was evaluated according to DIN EN ISO 354 [1], using a linear regression for the calculation of the reverberation time T_{20} from the level of the backward integrated impulse response.

The determined reverberation times in the reverberation room with and without test object are indicated in Table C.1.

Frequency	Reverberation time <i>T</i> in s							
in Hz	<i>T</i> ₁ (without test object)	<i>T</i> ₂ (with test object)						
100	5.10	5.10						
125	5.07	5.33						
160	5.45	5.01						
200	5.26	4.57						
250	5.24	4.28						
315	5.11	3.64						
400	5.43	3.20						
500	5.41	2.91						
630	5.28	2.66						
800	4.96	2.51						
1000	5.15	2.61						
1250	5.25	2.62						
1600	5.18	2.78						
2000	4.92	2.87						
2500	4.17	2.84						
3150	3.40	2.61						
4000	2.65	2.22						
5000	2.15	1.88						

Table C.1. Reverberation times.

MÜLLER-BBM

List of test equipment

The test equipment used is listed in Table C.2.

Table C.2. Test equipment.

Name	Manufacturer	Туре	Serial-No.
AD-/DA-converter	RME	Fireface 802	23811470
Amplifier	APart	Champ 2	09050048
Dodecahedron	Müller-BBM	DOD360A	372828
Dodecahedron	Müller-BBM	DOD360A	372829
Dodecahedron	Müller-BBM	DOD360A	372830
Dodecahedron	Müller-BBM	DOD360A	372831
Microphone	Microtech	M370	1355
Microphone	Microtech	M370	1356
Microphone	Microtech	M360	1786
Microphone	Microtech	M360	1787
Microphone	Microtech	M360	1788
Microphone	Microtech	M360	1789
Microphone power supply	MFA	IV80F	330364
Hygro-/Thermometer	Testo	Saveris H1E	01554624
Barometer	Lufft	Opus 10	030.0910.0003.9. 4.1.30
Software for measurement and evaluation	Müller-BBM	Bau 4	Version 1.11

Version 2